Hemagglutination and proteoglycan binding by the Lyme disease spirochete, Borrelia burgdorferi.
نویسندگان
چکیده
The ability of the Lyme disease spirochete to attach to host components may contribute to its ability to infect diverse tissues. We present evidence that the Lyme disease spirochete expresses a lectin activity that promotes agglutination of erythrocytes and bacterial attachment to glycosaminoglycans. Among a diverse collection of 21 strains of Lyme disease spirochete, hemagglutinating activity was easily detected in all but 3 strains, and these three strains were noninfectious. The ability to agglutinate erythrocytes was associated with the ability of the spirochete to bind to the sulfated polysaccharide dextran sulfate and to mammalian cells. Soluble dextran sulfate was a potent inhibitor of both hemagglutination and attachment to mammalian cells, while dextran had no effect on either activity, suggesting that dextran sulfate may inhibit attachment by mimicking host cell glycosaminoglycans. Consistent with this, the spirochete bound to immobilized heparin, and soluble heparin inhibited bacterial adhesion to mammalian cells. The bacterium did not bind efficiently to Vero cells treated with heparinase or heparitinase or to mutant CHO cell lines that are deficient in proteoglycan synthesis. Sulfation of glycosaminoglycans was critical for efficient bacterial recognition, as Vero cells treated with an inhibitor of sulfation, or a mutant CHO cell line that produces undersulfated heparan sulfate, did not mediate maximal spirochetal binding. Binding of the spirochete to extracellular matrix also appeared to be dependent upon this attachment pathway. These findings suggest that a glycosaminoglycan-binding activity which can be detected by hemagglutination contributes to the attachment of the Lyme disease spirochete to host cells and matrix.
منابع مشابه
Identification of Two Epitopes on the Outer Surface Protein A of the Lyme Disease Spirochete Borrelia burgdorferi
A murine IgM monoclonal antibody (MA-2C6) with κ-light chains directed against an antigenic determinant of outer surface protein A (OspA) of the Lyme disease spirochete, Borreliaburgdorferi, is produced. This antibody could bind specifically to OspA antigen of several isolates of B. burgdorferi, but not to the non-Lyme disease bacteria such as T. pallidum and B. hermsii. Antibody MA-2C6 was pur...
متن کاملStructural requirements for glycosaminoglycan recognition by the Lyme disease spirochete, Borrelia burgdorferi.
Borrelia burgdorferi, the Lyme disease agent, binds glycosaminoglycans (GAGs) such as heparin, heparan sulfate, and dermatan sulfate. Heparin or heparan sulfate fractions separated by size or charge were tested for their ability to inhibit attachment of B. burgdorferi to Vero cells. GAG chains of increasing length and/or charge showed increasing inhibitory potency, and detectable heparin inhibi...
متن کاملReport of a case of Lyme disease in Mazandaran
Lyme disease is caused by the spirochete Borrelia burgdorferi. Depending on the stage of illness, infection may be limited to the skin or involve the cardiac, nervous and musculoskeletal systems. Herein, we report a case of Lyme disease in a 23-year-old woman from North of Iran (Mazandaran) in early-localized stage of erythema chronicum migrans. The diagnosis was confirmed by the presence of se...
متن کاملBorrelia burgdorferi glycosaminoglycan-binding proteins: a potential target for new therapeutics against Lyme disease.
The spirochete bacterium Borrelia burgdorferi sensu lato is the causative agent of Lyme disease, the most common vector-borne disease in Europe and the United States. The spirochetes can be transmitted to humans via ticks, and then spread to different tissues, leading to arthritis, carditis and neuroborreliosis. Although antibiotics have commonly been used to treat infected individuals, some tr...
متن کاملStrain-Specific Variation of the Decorin-Binding Adhesin DbpA Influences the Tissue Tropism of the Lyme Disease Spirochete
Lyme disease spirochetes demonstrate strain- and species-specific differences in tissue tropism. For example, the three major Lyme disease spirochete species, Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii, are each most commonly associated with overlapping but distinct spectra of clinical manifestations. Borrelia burgdorferi sensu stricto, the most common Lyme spirochete in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 63 3 شماره
صفحات -
تاریخ انتشار 1995